Synthesis of β -Amino Esters by the Conjugate Addition of Nitrogen Nucleophiles to α, β -Unsaturated Esters Having Chiral p-Tolylsulfinyl Groups Haruo Matsuyama,* Nobuhiro Itoh, Masato Yoshida, Nobumasa Kamigata, Sigeru Sasaki, and Masahiko Iyoda Department of Chemistry, Faculty of Science, Tokyo Metropolitan University, Hachioji, Tokyo 192-03 (Received December 25, 1996) The conjugate addition of nitrogen nucleophiles to *t*-butyl (*E*)-2-(*p*-tolylsulfinyl)cinnamates (1) afforded the corresponding chiral β -amino esters, which are important building blocks for synthesis of biologically active polyamine alkaloids. The diastereoselectivity of the reactions was 49 to 89%, and (*S*)- β -amino esters were obtained from (*R*)-1 while (*R*)- β -amino esters were synthesized from (*S*)-1, respectively. β-Amino acids are important compounds in pharmacology and synthetic organic chemistry and, recently, a few reports on asymmetric synthesis were published.¹ The group of macrocyclic lactams containing the biogenetic bases, spermine and spermidine, represents a new class of polyamine alkaloids which have the framework of β-amino acids and are of particular interest because of the broad biological properties such as antibiotic and antihypertensive activity.^{2,3} Recently, the synthesis of 13-membered lactam alkaloid, (S)-(+)dihydroperiphylline, starting from (S)-(-)- β -phenyl- β -alanine was reported.^{4,5} Asymmetric induction in the conjugate addition of nucleophiles to chiral vinyl sulfoxides has proven to be a useful methodology for the synthesis of chiral compounds,6 and the asymmetric synthesis of chiral β-amino sulfoxides by conjugate addition of amines to chiral vinyl sulfoxides⁷ and the synthesis of β-amino esters by addition of enolate ions to chiral sulfinimines⁸ were investigated. More recently, we reported the conjugate addition reaction of 6- and 5-membered cyclic hydrazines such as piperidazine and pyrazolidine to t-butyl 2-(p-tolylsulfinyl)cinnamates (1) and synthesized the chiral 9- and 8-membered lactams with high optical purity (up to 95% e.e.). 9,10 The asymmetric synthesis of 13-membered lactam alkaloid, celacinnine, and 8-membered lactam alkaloid, homaline, was accomplished by this method. 9,10 In the course of developing this method, we investigated the conjugate addition of acyclic nitrogen nucleophiles such as ammonia, benzylamine, 1,3-diaminopropane, and 1,4-diaminobutane to t-butyl 2-(p-tolylsulfinyl)cinnamates (1) and found that this reaction system is efficient for the synthesis of chiral amino esters (Scheme 1). **Table 1.** Conjugate addition of nitrogen nucleophiles to t-butyl 2-(p-tolylsulfinyl)cinnamates $(1)^a$ and subsequent reductive elimination | Entry | Conf | | Product | | | |-------|------|------------------------------|---------|-------------------|----------------------| | | of 1 | 1 Nucleophiles | Yie | ld/% ^t | e.e./% (R/S) | | 1 | S | NH ₃ | 3 | 68 | 81° (R) | | 2 | R | NH_3 | 3 | 68 | $74^{c}(S)$ | | 3 | S | $C_6H_5CH_2NH_2$ | 4 | 41 | $49^{\rm d}(R)$ | | 4 | R | $C_6H_5CH_2NH_2$ | 4 | 45 | $52^{d}(S)$ | | 5 | S | (S) - $C_6H_5CH(CH_3)NH_2$ | 5 | 37 | $17^{e}(R,S)$ | | 6 | R | (S) - $C_6H_5CH(CH_3)NH_2$ | 5 | 83 | $62^{e}(S,S)$ | | 7 | S | $H_2N(CH_2)_3NH_2$ | 6 | 89 | $67^{\mathrm{f}}(R)$ | | 8 | R | $H_2N(CH_2)_3NH_2$ | 6 | 79 | $62^{f}(S)$ | | 9 | S | $H_2N(CH_2)_4NH_2$ | 7 | 67 | $58^{f}_{a}(R)$ | | 10 | R | $H_2N(CH_2)_4NH_2$ | 7 | 64 | 89 ^f (S) | ^a The optical purity of *t*-butyl 2-(*p*-tolylsulfinyl)cinnamates (1) was determined by HPLC analysis using a chiral column (Daicel CHIRALPAK AS; hexane/ethanol = 95/ 5). (5)-1: $[\alpha]_D$ +241° (c 0.9, CHCl₃), 99% e.e.; (*R*)-1: $[\alpha]_D$ -243° (c 1.0, CHCl₃), 99% e.e. ^b Isolated yield. ^c The optical purity was determined by HPLC analysis, after converting 3 to *N*-acetyl derivative, using a chiral column (Daicel CHIRALPAK AD; hexane/ 2-propanol= 9/ 1). ^d The enantiomeric excess was determined by ¹H NMR using a shift reagent [Eu(hfc)₃]. ^e The diastereomeric excess was determined by ¹H NMR. ^f The optical purity was determined by comparison with the $[\alpha]_D$ value of authentic compound: see References 14 and 15. The conjugate addition of ammonia to t-butyl 2-(p-tolylsulfinyl)cinnamate, (S, E)-1 (99% e.e.), 10 proceeded smoothly in THF at room temperature under nitrogen to give the ammonia adduct 2, which was converted to (R)-(+)-t-butyl 3-amino-3-phenylpropanoate (3) [[α]_D+18° (c 1.3, CHCl₃); 81% e.e.]¹² in 68% yield by the reductive elimination of the p-tolylsulfinyl group of 2 with samarium(II) iodide (6 equiv)¹¹ and methanol at 0 °C (Table 1, entry 1). Similarly, the conjugate addition of ammonia to (R, E)-1 (99% e.e.), R0 followed by successive reduction of the p-tolylsulfinyl group of 2 with SmI₂ in situ proceeded smoothly to give (R)-(-)-3 [[α]_D-13.3° (c 1.2, CHCl₃); 74% e.e.] in 68% yield (entry 2). The reaction of Tol O Sml₂ $$CH_3OH$$ CH_3OH Scheme 1. Conjugate addition of nitrogen nucleophiles to *t*-butyl (*E*)-2-[(*S*)- and (*R*)-*p*-tolylsulfinyl]cinnamates (1) and subsequent reductive elimination. 376 Chemistry Letters 1997 Figure 1. Molecular structure of t-butyl 2-(p-tolylsulfinyl)cinnamate, (R,E)-1, and proposed mechanism in the conjugate addition of nitrogen nucleophiles to (R,E)-1 and subsequent reductive elimination. benzylamine (10 equiv) with 1 proceeded under similar conditions to afford t-butyl 3-benzylamino-3-phenylpropanoate (4), and the stereochemistry of 4 was determined by the specific rotation. Amino ester (*R*)-(+)-4 [[α]_D +13.2° (c 1.0, CHCl₃); 49% e.e.] was obtained in 41% yield by the reaction of benzylamine with (S)-1, and the reaction of benzylamine with (R)-1 gave (S)-(-)-4 [[α]D -14.8° (c 0.6, CHCl₃); 52% e.e.] in 45% yield (entries 3 and 4). The reaction of (R)-1 with (S)-1methylbenzylamine (5 equiv) proceeded in THF at room temperature to give two diastereoisomers of 5 in 83% yield with 62% d.e. The stereoselectivity of the conjugate addition of (R)-1 with (S)-1-methylbenzylamine was about 10% better than that of the reaction of (R)-1 with benzylamine. On the other hand, the stereoselectivity of the conjugate addition reaction of another pair, (S)-1 and (S)-1-methylbenzylamine, decreased to 17% d.e. (entries 5 and 6). Yamamoto et al. reported the synthesis of 13-membered spermidine alkaloid by the boron-templated cyclization of triamino esters.^{5,13} If the conjugate addition of polyamine derivatives to t-butyl (p-tolylsulfinyl)cinnamates (1) can proceed stereo-selectively, the framework of the chiral polyamine alkaloids can be synthesized by successive cyclization. Accordingly, we investigated the conjugate addition of 1,3diaminopropane and 1,4-diaminobutane, as the model compounds of polyamines such as spermine and spermidine, to 1. The reaction of 1,3-diaminopropane (5 equiv) with (S)-1proceeded in THF in the presence of potassium t-butoxide (0.1 equiv) at room temperature and (R)-(+)-t-butyl 7-amino-3phenyl-4-azaheptanoate (6) [$[\alpha]_D$ +7.2° (c 1.0, CHCl₃); 67% e.e.] was obtained in 89% yield.¹⁴ The reaction of 1,3diaminopropane with (R)-1 gave (S)-(-)-6 [[α]_D -6.7° (c 1.0, CHCl₃); 62% e.e.] in 79% yield (entries 7 and 8). The reaction of 1,4-diaminobutane (5 equiv) with (R)-1 proceeded in THF in the presence of potassium t-butoxide (0.1 equiv) at room temperature to afford (S)-(-)-t-butyl 8-amino-3-phenyl-4azaoctanoate (7) [[α]_D -6.7° (c 1.0, CHCl₃); 89% e.e.] in 64% yield. 15 The reaction of 1,4-diaminobutane with (S)-1 gave (R)-(+)-7 [[α]_D +4.4° (c 1.1, CHCl₃); 58% e.e.] in 67% yield (entries 9 and 10). On the basis of the stereochemistry of the (S)- β -amino ester obtained from (R,E)-1, the mechanism of the asymmetric conjugate addition of nitrogen nucleophiles to 1 can be explained as follows. The structure of (R,E)-1 was determined by X-ray analysis as shown in Figure 1.¹⁶ The oxygen of the sulfinyl group lies near the plane of the carbon-carbon double bond and the phenyl group. The p-tolyl group on sulfur is directed below the plane and the bulky t-butoxy group of the ester is also placed below the plane. Therefore, the front side of the plane shown in Figure 1 is less sterically crowded and the nitrogen nucleophiles can attack easily the β -carbon atom of the double bond of (R,E)-1 from the front side of the plane (re-face). Thus, the reaction of (R,E)-1 with amine afforded the (S)- β -amino ester, and the reaction of (S,E)-1 with amine gave the (R)- β -amino ester. ## References and Notes - 1 D. C. Cole, Tetrahedron, 50, 9517 (1994). - 2 H. H. Wasserman and J. S. Wu, Heterocycles, 17, 581 (1982). - 3 S. Funayama, K. Yoshida, C. Konno, and H. Hikino, *Tetrahedron Lett.*, **21**, 1355 (1980) and references cited therein. - 4 T. Kaseda, T. Kikuchi, and C. Kibayashi, *Tetrahedron Lett.*, **30**, 4539 (1989). - 5 K. Ishihara, Y. Kuroki, and H. Yamamoto, Synlett, 1995, 41. - 6 M. C. Carreno, Chem. Rev., 95, 1717 (1995). - 7 S. G. Pyne, P. Bloem, and R. Griffith, *Tetrahedron*, **45**, 7013 (1989) and references cited therein. - 8 F. A. Davis, R. T. Reddy, and R. E. Reddy, J. Org. Chem., 57, 6387 (1992). - 9 N. Itoh, H. Matsuyama, M. Yoshida, N. Kamigata, and M. Iyoda, Heterocycles 41 415 (1995) - Heterocycles, 41, 415 (1995). 10 N. Itoh, H. Matsuyama, M. Yoshida, N. Kamigata, and M. Iyoda, Bull. Chem. Soc. Inn. 68, 3121 (1995). - Chem. Soc. Jpn., 68, 3121 (1995). 11 For Sml₂ reduction, see; Y. Arai, M. Matsui, and T. Koizumi, J. Chem. Soc., Perkin Trans. J. 1990, 1233. - 12 Davies et al. reported the configuration of (S)-(-)-3 [[α]_D -21° (CHCl₃); 95% e.e.]; S. G. Davies, N. M. Garrido, O. Ichihara, and A. S. Walters, J. Chem. Soc., Chem. Commun., 1993, 1153. - 13 H. Yamamoto and K. Maruoka, J. Am. Chem. Soc., 103, 6133 (1981). - 14 The authentic (*R*)-(+)-6 was prepared as follows. The conjugate addition of (*R*)-(+)-3 [[α]_D +18.0° (*c* 1.3, CHCl₃); 81% e.e.] to acrylonitrile gave (*R*)-(+)-*t*-butyl 6-cyano-3-phenyl-4-azahexanoate in 94% yield. The reduction (PtO₂/ H₂) of the cyano group gave amino ester (*R*)-(+)-6 [[α]_D +8.7° (*c* 1.1, CHCl₃); 81% e.e.] in 85% yield. - 15 The authentic (*S*)-(-)-7 was prepared as follows. The alkylation reaction of (*S*)-(-)-3 (86% e.e.) with 4-bromobutyronitrile in ethanol solution in the presence of potassium carbonate gave (*S*)-(-)-*t*-butyl 7-cyano-3-phenyl-4-azaheptanoate [|α|_D -30.9° (*c* 1.2, CHCl₃)]. The reduction (PtO₂/ H₂) of the cyano group afforded (*S*)-(-)-7 [|α|_D -6.5° (*c* 1.0, CHCl₃); 86% e.e.]. - 16 Crystal data of (*R,E*)-1 [Rigaku AFC7R diffractometer, Mo-Kα radiation (λ = 0.71069 Å)]: C₂₀H₂₂O₃S, M= 342.45, monoclinic, space group P2₁, a= 10.511(7), b= 7.558(3), c= 11.938(3) Å, β = 92.19(4)°, V= 947.6(7) ų, Z= 2, D_{calcd}= 1.200 gcm⁻³. The structure was solved by direct methods and refined by full-matrix least squares to R= 0.078, Rw= 0.083 using 2051 reflections with I >3.00σ(I).